The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Anders Tingberg. Photo

Anders Tingberg

Associate professor

Portrait of Anders Tingberg. Photo

Dose reduction and its influence on diagnostic accuracy and radiation risk in digital mammography: an observer performance study using an anthropomorphic breast phantom

Author

  • Tony Svahn
  • Bengt Hemdal
  • Mark Ruschin
  • D. P. Chakraborty
  • Ingvar Andersson
  • Anders Tingberg
  • Sören Mattsson

Summary, in English

This study aimed to investigate the effect of dose reduction on diagnostic accuracy and radiation risk in digital mammography. Simulated masses and microcalcifications were positioned in an anthropomorphic breast phantom. Thirty digital images, 14 with lesions, 16 without, were acquired of the phantom using a Mammomat Novation (Siemens, Erlangen, Germany) at each of three dose levels. These corresponded to 100%, 50% and 30% of the normally used average glandular dose (AGD; 1.3 mGy for a standard breast). Eight observers interpreted the 90 unprocessed images in a free response study, and the data were analysed with the jackknife free response receiver operating characteristic (JAFROC) method. Observer performance was assessed using the JAFROC figure of merit (FOM). The benefit of radiation risk reduction was estimated based on several risk models. There was no statistically significant difference in performance, as described by the FOM, between the 100% and the 50% dose levels. However, the FOMs for both the 100% and the 50% dose were significantly different from the corresponding quantity for the 30% dose level (F-statistic=4.95, p-value=0.01). A dose reduction of 50% would result in three to nine fewer breast cancer fatalities per 100 000 women undergoing annual screening from the age of 40 to 49 years. The results of the study indicate a possibility of reducing the dose to the breast to half the dose level currently used. This has to be confirmed in clinical studies, and possible differences depending on lesion type should be examined further.

Department/s

  • Medical Radiation Physics, Malmö
  • Department of Translational Medicine

Publishing year

2007

Language

English

Pages

557-562

Publication/Series

British Journal of Radiology

Volume

80

Issue

955

Document type

Journal article

Publisher

British Institute of Radiology

Topic

  • Radiology, Nuclear Medicine and Medical Imaging

Status

Published

Research group

  • Medical Radiation Physics, Malmö

ISBN/ISSN/Other

  • ISSN: 1748-880X