The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Sophia Zackrisson. Photo

Sophia Zackrisson

Research group manager, Principal investigator, Professor, MD

Portrait of Sophia Zackrisson. Photo

Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study

Author

  • Alejandro Rodriguez-Ruiz
  • Kristina Lång
  • Albert Gubern-Merida
  • Jonas Teuwen
  • Mireille Broeders
  • Gisella Gennaro
  • Paola Clauser
  • Thomas H. Helbich
  • Margarita Chevalier
  • Thomas Mertelmeier
  • Matthew G. Wallis
  • Ingvar Andersson
  • Sophia Zackrisson
  • Ioannis Sechopoulos
  • Ritse M. Mann

Summary, in English

Purpose: To study the feasibility of automatically identifying normal digital mammography (DM) exams with artificial intelligence (AI) to reduce the breast cancer screening reading workload. Methods and materials: A total of 2652 DM exams (653 cancer) and interpretations by 101 radiologists were gathered from nine previously performed multi-reader multi-case receiver operating characteristic (MRMC ROC) studies. An AI system was used to obtain a score between 1 and 10 for each exam, representing the likelihood of cancer present. Using all AI scores between 1 and 9 as possible thresholds, the exams were divided into groups of low- and high likelihood of cancer present. It was assumed that, under the pre-selection scenario, only the high-likelihood group would be read by radiologists, while all low-likelihood exams would be reported as normal. The area under the reader-averaged ROC curve (AUC) was calculated for the original evaluations and for the pre-selection scenarios and compared using a non-inferiority hypothesis. Results: Setting the low/high-likelihood threshold at an AI score of 5 (high likelihood > 5) results in a trade-off of approximately halving (− 47%) the workload to be read by radiologists while excluding 7% of true-positive exams. Using an AI score of 2 as threshold yields a workload reduction of 17% while only excluding 1% of true-positive exams. Pre-selection did not change the average AUC of radiologists (inferior 95% CI > − 0.05) for any threshold except at the extreme AI score of 9. Conclusion: It is possible to automatically pre-select exams using AI to significantly reduce the breast cancer screening reading workload. Key Points: • There is potential to use artificial intelligence to automatically reduce the breast cancer screening reading workload by excluding exams with a low likelihood of cancer. • The exclusion of exams with the lowest likelihood of cancer in screening might not change radiologists’ breast cancer detection performance. • When excluding exams with the lowest likelihood of cancer, the decrease in true-positive recalls would be balanced by a simultaneous reduction in false-positive recalls.

Department/s

  • BioCARE: Biomarkers in Cancer Medicine improving Health Care, Education and Innovation
  • Radiology Diagnostics, Malmö

Publishing year

2019-04-16

Language

English

Pages

4825-4832

Publication/Series

European Radiology

Volume

29

Issue

9

Document type

Journal article

Publisher

Springer

Topic

  • Radiology, Nuclear Medicine and Medical Imaging

Keywords

  • Artificial intelligence
  • Breast cancer
  • Deep learning
  • Mammography
  • Screening

Status

Published

Research group

  • Radiology Diagnostics, Malmö

ISBN/ISSN/Other

  • ISSN: 0938-7994