Anders Tingberg
Associate professor
Visibility of microcalcification clusters and masses in breast tomosynthesis image volumes and digital mammography: A 4AFC human observer study.
Author
Summary, in English
Purpose:
To investigate the visibility of simulated lesions in digital breast tomosynthesis (BT) image volumes compared with 2D digital mammography (DM).
Methods:
Simulated lesions (masses and microcalcifications) were added to images of the same women acquired on a DM system (Mammomat Novation, Siemens) and a BT prototype. The same beam quality was used for the DM and BT acquisitions. The total absorbed dose resulting from a 25-projection BT acquisition and reconstruction (BT(25)) was approximately twice that of a single DM view. By excluding every other projection image from the reconstruction (BT(13)), approximately the same dose as in DM was effected. Simulated microcalcifications were digitally added with varying contrast to the DM and BT images. Simulated masses with 8 mm diameter were also added to BT images. A series of 4-alternative forced choice (4AFC) human observer experiments were conducted. Four medical physicists participated in all experiments, each consisting of 60 trials per experimental condition. The observers interpreted the BT image volumes in cine-mode at a fixed image sequence speed. The required threshold contrast (S(t)) to achieve a detectability index (d') of 2.5 (i.e., 92.5% correct decisions) was determined.
Results: The S(t) for mass detection in DM was approximately a factor of 2 higher than required in BT indicating that the detection of masses was improved under BT conditions compared to DM. S(t) for microcalcification detection was higher for BT than for DM at both BT dose levels (BT(25) and BT(13)), with a statistically significant difference in S(t) between DM and BT(13). These results indicate a dose-dependent decrease in detection performance in BT for detection of microcalcifications.
Conclusions: In agreement with previous investigations, masses of size 8 mm can be detected with less contrast in BT than in DM indicating improved detection performance for BT. However, for the investigated microcalcifications, the results of this study indicate potentially worse performance for BT than for DM at the same dose level.
To investigate the visibility of simulated lesions in digital breast tomosynthesis (BT) image volumes compared with 2D digital mammography (DM).
Methods:
Simulated lesions (masses and microcalcifications) were added to images of the same women acquired on a DM system (Mammomat Novation, Siemens) and a BT prototype. The same beam quality was used for the DM and BT acquisitions. The total absorbed dose resulting from a 25-projection BT acquisition and reconstruction (BT(25)) was approximately twice that of a single DM view. By excluding every other projection image from the reconstruction (BT(13)), approximately the same dose as in DM was effected. Simulated microcalcifications were digitally added with varying contrast to the DM and BT images. Simulated masses with 8 mm diameter were also added to BT images. A series of 4-alternative forced choice (4AFC) human observer experiments were conducted. Four medical physicists participated in all experiments, each consisting of 60 trials per experimental condition. The observers interpreted the BT image volumes in cine-mode at a fixed image sequence speed. The required threshold contrast (S(t)) to achieve a detectability index (d') of 2.5 (i.e., 92.5% correct decisions) was determined.
Results: The S(t) for mass detection in DM was approximately a factor of 2 higher than required in BT indicating that the detection of masses was improved under BT conditions compared to DM. S(t) for microcalcification detection was higher for BT than for DM at both BT dose levels (BT(25) and BT(13)), with a statistically significant difference in S(t) between DM and BT(13). These results indicate a dose-dependent decrease in detection performance in BT for detection of microcalcifications.
Conclusions: In agreement with previous investigations, masses of size 8 mm can be detected with less contrast in BT than in DM indicating improved detection performance for BT. However, for the investigated microcalcifications, the results of this study indicate potentially worse performance for BT than for DM at the same dose level.
Department/s
- Medical Radiation Physics, Malmö
- Radiology Diagnostics, Malmö
Publishing year
2012
Language
English
Pages
2431-2437
Publication/Series
Medical Physics
Volume
39
Issue
5
Links
Document type
Journal article
Publisher
American Association of Physicists in Medicine
Topic
- Biophysics
Status
Published
Research group
- Medical Radiation Physics, Malmö
- Radiology Diagnostics, Malmö
ISBN/ISSN/Other
- ISSN: 0094-2405