The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Anders Tingberg. Photo

Anders Tingberg

Associate professor

Portrait of Anders Tingberg. Photo

Dose-length-product determination on cone beam computed tomography through experimental measurements and dose-area-product conversion

Author

  • Veronica Fransson
  • Anders Tingberg

Editor

  • Hilde Bosmans
  • Wei Zhao
  • Lifeng Yu

Summary, in English

The dosimetry of cone beam computed tomography (CBCT) is not fully elaborated yet, and some of these systems presents dose-area-product (DAP) values after an examination rather than, as in the case of traditional CT, the doselength- product (DLP). The purpose of this study was to provide a reproducible and straight-forward method for DLP measurements on CBCT, as well as to validate a tool for estimating DLP for a CBCT system in terms of accuracy. A prototype conversion tool for estimating DLP, using the DAP value, was provided by the vendor of a CBCT system which currently display only DAP. The DAP to DLP conversion tool was validated using five protocols for extremity imaging. DLP was measured using a 30 cm ionization chamber and 30 cm long cylindrical PMMA-phantom. DLP, the integrated absorbed dose within the ionization chamber, was measured through central and peripheral measurements in the phantom in order to calculate the weighted DLP, DLPW,CBCT. Comparisons between DLPW,CBCT and estimated DLP, showed that the conversion tool was accurate within 10%, with a mean average error of 6.1% for all measured protocols. The variation between repeated measurements was small, making the method highly reproducible. In conclusion, in this study a simple method for determining DLP on CBCT was presented, and it was validated that the conversion tool can present the delivered dose in terms of DLP with high accuracy. The measured DLP, as well as the DLP estimated by the conversion tool, is suitable for quality control and relative dose comparisons between protocols, but its’ relation to the DLP of CT systems should be investigated further in order to relate to patient dose.

Department/s

  • Medical Radiation Physics, Malmö
  • LUCC: Lund University Cancer Centre

Publishing year

2021

Language

English

Publication/Series

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Volume

11595

Document type

Conference paper

Publisher

SPIE

Topic

  • Radiology, Nuclear Medicine and Medical Imaging

Conference name

Medical Imaging 2021: Physics of Medical Imaging

Conference date

2021-02-15 - 2021-02-19

Conference place

Virtual, Online, United States

Status

Published

Research group

  • Medical Radiation Physics, Malmö

ISBN/ISSN/Other

  • ISSN: 1605-7422
  • ISBN: 9781510640207